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Linear extension of the Robinson-Schensted algorithm
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The Robinson-Schensted (RS) algorithm demonstrates a bijection between the set of magnetic configura-
tions f and the set of pairs of tableaux: a semistandard Weyl tableauP (f) accompanied by a standard
Young tableauQ(f). We show that it is not only a bijection between sets, but it can be extended to a linear
unitary transformation within the space of all quantum states of the magnet.
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1 Introduction

In purely combinatorial manner the RS algorithm [1, 2, 3] associates each wordf in an alphabet̃n with a
pair (P (f), Q(f)) of standard Weyl and Young tableaux [4]. This helps us to find the maximal lengths of
nondecreasing (and decreasing) subwords of the wordf in the following manner: the maximal length of
a nondecreasing subword off is equal to the length of the top row ofP (f) (or Q(f) because these tables
have the same shape), similarly, the maximal length of a decreasing subword off is equal to the height of
the first column ofP (f) (or Q(f)) [5, 6].

In our article we want to show an immediate relation between theRS algorithm and the description of
the kinematics of the linear Heisenberg magnetic ring. We will present the quantum relationship between
two objects: a magnetic configuration of the ring, and itsRS image(P (f), Q(f)). We will demonstrate
that for the reason of the linear structure of the spaceH (the space of all quantum states of the magnet) this
relationship is not purely combinatorial but linear. Clearly, the RS algorithm itself defines only a bijective
mapping between the two combinatorial sets. In the context of the Heisenberg chain, these two sets have
an obvious interpretation of two different orthonormal bases in the spaceH of all quantum states of the
magnet. This fact stimulates us to extend this algorithm to the spaceH by linearity along the general lines
described elsewhere [7, 8]. Here we demonstrate explicitly the construction of a wave packet corresponding
to the linear version of the RS bijection.

Let’s introduce some preliminary facts about Heisenberg magnet, for more detail see [7]. A magnetic
configuration of the one-dimensional Heisenberg ring with spins is the mapping

f : Ñ 7−→ ñ (1)

whereÑ = {j = 1, 2, ..., N} - the set of all nodes of the magnet,ñ = {i = 1, 2, ..., n}, n = 2s + 1 - the
set of a single node spin projections. It can be written in a form

|f〉 = |i1, i2, ..., iN >, ij ∈ ñ, j ∈ Ñ . (2)

We may treat such a configuration as a word of the lengthN in the alphabet of spins. We denote byñÑ

the set of all magnetic configurations.
In the next section we describe the duality of Weyl as a physical counterpart of the RS image of a

magnetic configuration. Then we construct the corresponding wave packet, illustrate it by an example, and
make some final conclusions.
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2 The basis of duality of Weyl

The tableaux(P (f), Q(f)) appear in description of the Heisenberg magnet as the labels of the irreducible
basis of the Weyl duality. More explicitly, the space of all quantum states of the magnet is

H = lcC ñÑ , (3)

wherelcC ñÑ denotes the linear closure of the setñÑ of all magnetic configurations over the fieldC of
complex numbers. In this space act two groups, symmetric and unitary:

A : ΣN ×H → H, B : U(n)×H → H. (4)

In this way, we get reducible representations in the basis of all magnetic configurations. These two actions
mutually commute, it means that appropriate quantities related to both operators ”can be measured simul-
taneously”. A maximal system of such commuting observables is realized in an irreducible basis in the
spaceH, adopted to the symmetry of both dual groups. So, we need to construct a basis consisting of the
vectors which have a specific symmetry of symmetric and unitary groups.

From the theory of representations we know that partitions of the numberN label the irreps (irreducible
representations)∆λ of the symmetric groupΣN and, at the same time, the irrepsDλ of the unitary group
U(n). Consider decomposition of these dual actions into irreps:

A =
∑

λ`N,|λ|≤n

m(A, λ) ∆λ, B =
∑

λ`N,|λ|≤n

m(B, λ) Dλ, (5)

on the strength of the Weyl duality [9] we can write:

m(A, λ) = dim Dλ, m(B, λ) = dim ∆λ, (6)

what means that the multiplicity of an irrep∆λ of the symmetric group in the representationA is equal to
the dimension of irrepDλ of the unitary group, and the multiplicity of an irrepDλ of the unitary group in
the representationB is equal to dimension of irreps∆λ of the symmetric group, the symbol|λ| denotes
the number of parts of the partitionλ. Eqs. (5,6) give the decomposition of the spaceH into sectors:

H =
∑

λ`N,|λ|≤n

⊕ Hλ, andHλ = Uλ ⊗ V λ, (7)

whereUλ and V λ are carrier spaces forDλ and ∆λ, respectively. We take the setWT (λ, ñ) of all
semistandard Young tableaux of the shapeλ in the alphabet̃n as a standard basis forUλ, and refer to its
elements as to Weyl tableaux. Similarly, we take the setSY T (λ) of all standard Young tableaux in the
alphabetÑ as a standard basis forV λ. Thus, the vectors of the basis of the Weyl duality have a form
|λ t, y〉 whereλ - a partition which labels the irreps ofΣN andU(n), t - a Weyl tableau,y - a Young
tableau.

The RS combinatorial algorithm mentioned at the beginning of this article, provides a way of labelling
of the irreducible scheme of the Weyl duality, by magnetic configurationsf ′ ∈ ñÑ in combinatorial unique
way, prescribing to each vector|λ t y〉 a magnetic configurationf ′ by the reverse RS algorithm. But each
state|λ t y〉 should have a specified symmetry. So, it is now obvious, that each irreducible state|λ t y〉 is
a definite linear superposition of a number of magnetic configuration. In other words we are looking for a
wave packet of the specified symmetry, given by a pair(t, y) of tableaux.

3 Linear version of the RS algorithm

Under the action of the groupΣN the setñÑ of all magnetic configurations decomposes into orbitsOµ,
whereµ denotes the weight of magnetic configuration. Such an orbit carries the transitive representation
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RΣN :Σµ

, whereΣµ is the Young subgroupΣµ = Σµ1 × Σµ2 × . . . × Σµn
. This transitive representation

decomposes into irreps ofΣN :

RΣN :Σµ ∼=
∑
λDµ

Kλ µ ∆λ. (8)

The basis elements of this representation are of the form|µλ t y〉, these are the same basic vectors as those
of the duality of Weyl but restricted to an orbitOµ, what is indicated by the additional quantum numberµ.
Elements of this basis can be expressed as a linear combination of some magnetic configuration from the
orbitOµ

|µλ t y〉 =
∑

f∈Oµ

[
µ λ t
f y

]
|f〉, (9)

where coefficients of this expansion (Kostka matrices at the level of bases [7]) are very closely related to
the RS algorithm, and have form[

µ λ t
f y

]
=

∑[
{1} {1} λ12

f(1) f(2) t12

] [
λ12 {1} λ123

t12 f(3) t123

]
. . .

[
λ1...N−1 {1} λ
t1...N−1 f(N) t

]
, (10)

where the sum runs over appropriate labels of intermediate representations. The coefficient[
λ1...j−1 {1} λ1...j

t1...j−1 f(j) t1...j

]
(11)

is defined unambiguously by reverse RS algorithm at the stepsN − j andN − j−1. t1...j is the remaining
Weyl tableau at thej-th step of reverse algorithm,λ1...j−1 its shape, whereas,t1...j−1 is the remaining
Weyl tableau at theN − j − 1-th step,λ1...j−1 its shape, andf(j) is thej-th letter of the configuration
f ∈ Oµ [8]. Let’s point out, that a pair of tableaux|t y〉 arose from a configurationf ′, not necessarily equal
to f . |f ′〉 has meaning as the word on the alphabetñ, whereas|f〉 physically denotes a product of single

node states of the Heisenberg magnet. The coefficient

[
µ λ t
f y

]
gives the amplitude of the product state

|f(1) f(2) . . . f(N)〉 in the state|µλ t y〉 = |RS(f ′)〉 of the duality of Weyl. The intermediate coefficient
(11) corresponds to the Littlewood-Richardson decomposition:

Dλ1...j−1 ⊗D{1} =
∑
λ1...j

⊕ Dλ1...j (12)

for the unitary groupU(n). And because in this decomposition we can add a box to the diagramλ1...j−1

only in places admissible by standardness, thus we don’t need any repetition labels. In the case of the
Heisenberg model with the single node spins = 1/2 (model revealSU(2) symmetry) the intermediate
coefficients (11) reduces to the Clebsch-Gordan coefficients for angular momentum theory. In this case (9)
reads

|µλ t y〉 =
∑

f∈Q(µ)

[
j1 j2 j12
m1 m2 m12

]
·
[
j12 j3 j123
m12 m3 m123

]
. . .

[
j12...N jN J
m12...N mN M

]
· |f〉 (13)

where angular momentumj1...k is determined by irrepλ1..k, and projection of angular momentumm1..k

by Weyl tableaut1..k, k = 1...N . For the Heisenberg magnet with single node spins ≥ 1/2, a way of
calculating the coefficients (11), one can find in the work of Louck [10].
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λ {4} {31} {22}

t + + − −
+ + −
−

+ +
− −

y 1 2 3 4
1 3 4
2

1 2 4
3

1 2 3
4

1 2
3 4

1 3
2 4

f f ′ + +−− −+ +− +−+− +−−+ −−++ −+−+

|+ +−−〉 1√
(6)

0 1√
(3)

1√
(6)

1√
(3)

0

| −+ +−〉 1√
(6)

− 1
2 − 1

2
√

(3)

1√
(6)

− 1

2
√

(3)
− 1

2

|+−+−〉 1√
(6)

1
2 − 1

2
√

(3)

1√
(6)

− 1

2
√

(3)

1
2

|+−−+〉 1√
(6)

1
2

1

2
√

(3)
− 1√

(6)
− 1

2
√

(3)
− 1

2

| − −+ +〉 1√
(6)

0 − 1√
(3)

− 1√
(6)

1√
(3)

0

| −+−+〉 1√
(6)

− 1
2

1

2
√

(3)
− 1√

(6)
− 1

2
√

(3)

1
2

Table 1 Kostka matrix at a level of bases forN = 4, n = 2, µ = {22}

4 Example

Tab.1 presents the Kostka matrix at the level of bases forN = 4, n = 2, µ = {22} . The columns are
labelled by the irreducible basis of the Weyl duality, rows by the magnetic configurations.

5 Conclusions

This algorithm plays two roles in the context of the Heisenberg magnet. Firstly, it serves for labelling the
irreducible basis of the Weyl duality, so that|λ t y〉 = |RS(f ′)〉. Secondly, it provides a complete infor-
mation for construction of|λ t y〉 in terms of magnetic configurationf , or, more shortly, for evaluation
of elements〈f |RS(f ′)〉 of the Kostka matrix at the level of bases. We stress at this point that magnetic
configurationsf andf ′ involved in these two roles have conceptually different quantum interpretations.
We also record an interesting result that the diagonal coupling coefficient〈f |RS(f)〉 is a product of ap-
propriate Wigner-Clebsch-Gordan coefficients, without any summation over intermediate basis, and with
no repetition labels.
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