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In this work we want to amplify the RS algorithm in the language of paths. Thus, it is a continuation of the
previous work [6], where the magnetic interpretation of RS algorithm was given. We also want to present
the intermediative role of paths in bijection between standard Young tableaux and rigged configurations.
We will treat the paths as a ”bridge” which allow us to move between this two objects.
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1 Introduction

The Heisenberg model of magnetism is a good example of applications of combinatoric notions in nanoscopic
physics. The solutions of the eigenproblem of the isotropic Heisenberg Hamiltonian in one dimension, i.e.
for linear magnetic ring consisting of N nodes, each with the spin 1/2, was given by Bethe [1] in 1931.
Nowadays it is known as the Bethe Ansatz (BA). An important ingredient of BA is the hypothesis of strings,
which yields a classification of BA eigenfunctions in terms of some combinatorial objects, described by
Kerov, Kirillov and Reshetikhin [2] as rigged string configurations.

We intend to combine these objects with the path described by Dasmahapatra [4] in the language of
duality of Weyl [5]. We will present the role of the latter in making predictions about character of solutions
of the Heisenberg Hamiltonian.

2 Preliminaries

We consider a linear magnetic Heisenberg ring, consisting ofN nodes, each with the spins. This provides
us with two sets, the set of nodes of the magnetic ring

Ñ = {j = 1, 2, ..., N} (1)

and the set of all single-node spin projections

ñ = {i = 1, 2, ..., n}, n = 2s + 1. (2)

The set̃n, the alphabet of spins, delivers an orthonormal basis for the carrier spaceh of a single-node spin
s, such that

h = lcCñ, dimh = n = 2s + 1. (3)

In order to obtain an orthonormal basis for the spaceH of all quantum states of the magnet, we define a
magnetic configuration on the ring̃N as

f : Ñ −→ ñ, |f〉 = |i1, i2, ..., iN >, ij ∈ ñ, j ∈ Ñ . (4)
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path 1 path 2 path 3 path 4

1. 1 1. 1 1. 1 1. 1

2. 1 2 2.

1

2 2. 1 2 2.

1

2

3. 1 2 3 3.

1

2

3 3.

1 2

3 3.

1 3

2

This path is
allowed

for n > 2

Table 1 Combinatoric way of creation of irreps of U(n)for N=3.

The set of all magnetic configurations

ñÑ = {f : Ñ −→ ñ} (5)

allows us to write the spaceH in the form

H = lcC ñÑ ∼=
∏
j∈Ñ

⊗ hj , (6)

wherehj is a faithful copy of the linear unitary spaceh, attributed to the nodej ∈ Ñ .
At that moment we need some important information about the scheme of Weyl duality [5], but for

the reason of conciseness we refer readers to our latest work [6], so we will proceed with the notation
established there.

3 The paths

We intend to present the paths considered by Dasmahapatra [4] in terms of a standard Young tableau (Young
diagram whose cells are occupied by integers that strictly increase along the rows and along the columns).
One path presents formation of one irrepD{λ} of the unitary group U(n) in decomposition of one of the
dual actions B [6]. This fact implies that the total number of paths is equal to

∑
λ`N,|N |≤n m(B, λ), that

is also the number of all standard Young tableaux of shapeλ ` N with |N | ≤ n.
Let us consider three particles, that is N=3. We create irrepsD{λ} of U(n) for this three particles combina-
torically. The number of possible ways of creation of such irreps is equal to the number of paths and thus
the number of standard Young tableaux of shapeλ ` N with |N | ≤ n, as seen in table 1. This process can
be also expressed briefly in the form

(D{1})⊗3 = D{3} ⊕ 2D{2 1} ⊕D{13}. (7)

Following that example, it is not difficult to see that there exists a bijection between paths and standard
Young tableaux, what was also discussed in [6] in the context of RS algorithm. If we look carefully at the
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definition of the element of the Kostka matrices at the level of bases[
µ λ t
f y

]
=

∑
[
{1} {1} λ12

f(1) f(2) t12

] [
λ12 {1} λ123

t12 f(3) t123

]
. . .

[
λ1...N−1 {1} λ
t1...N−1 f(N) t

]
,

(8)

where the sum runs over appropriate labels of intermediate representations, then we find out that the first
row of this coefficient depicts the ladder construction, presented in the table 1, equipped with the standard
bases, in row two, corresponding to the irreps presented in the first row.
The paths treated as standard Young tableaux naturally eliminate coefficients (8) where it is not possible to
insert the elements of the magnetic configuration f in the shape given by the path. That is the role of paths
in RS bijection.

The transitive representation of the symmetric groupΣN

RΣN :Σν ∼=
∑
λDµ

Kλµ∆λ (9)

presents the linear structure of the second dual action A of the symmetric group, where multiplicities
Kλµ constitute the Kostka matrix for the groupΣN andλ D µ denotes the dominance order [6][7]. Such
presentation helps us to observe that for n=2 the state of symmetry given by standard Young tableau is the
eigenvector of the total spin S. This fact does not hold forn > 2, what was shown in table 2.

4 Bijection between paths and strings

For the reason of conciseness we refer readers to [8] (in this conference) for some ground information
about string configuration, and like previously we will continue with the notation established there.
As we told earlier there is a bijection between paths and standard Young tableaux, and between standard
Young tableaux and rigged configurations [2], [4], as well. This fact implies the bijection between paths
and rigged configuration [4]. Lets restrict ourselfs to the case n=2. The duality of Weyl between sym-
metric groupΣN and the unitary group U(2), related to the single-node spin 1/2, allows us to replace the
Heisenberg model by the system of r spin deviations, or Bethe pseudoparticles. For each such a system,
pseudoparticles move on the ring̃N by jumps from a sitej ∈ Ñ to a nearest neighbourj′ = (j± 1)modN .
The first column of the table 3 contains magnetic configurations, the second - the corresponding Young
tableaux under the RS bijection [7], and the fourth - the rigged string configurations resulting from KKR
bijection, for the case N=6 and n=2. Some valuable information about eigenstates of the Heisenberg Hamil-
tonian are provided by string configuration and therefore by the paths because we are able to write down
the rigging of the string configuration from the path [4]. These two objects inform us, at the very begining,
about the character of the solutions of the Heisenberg Hamiltonian.

Each string has a definite length, given by a row of the string configuration. Strings can move on the
nodes unoccupied by other strings, as well as on slopes of longer strings up to reaching the same height. In
this way, strings of a given length l have the total numberPl of moves, referred to as ”the number of holes
of the length l”.These holes are distributed either to the left, or to the right of a given string. The number
of the former holes is called the riging0 ≤ Ll ≤ Pl of a given string, and provides an information of the
quasimomentum of this string.

5 Final remarks and conclusions

We have shown that the standard Young tableaux naturally exclude existence of some elements of the
Kostka matrix at the level of bases.
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M S=4,2,0 S=3,2,1 S=0,2 S=1

4 RΣ4:Σ4 = ∆{4}

3 RΣ4:(Σ3×Σ1) = ∆{4} + 2∆{3 1}

2 RΣ4:(Σ3×Σ1) = ∆{4} + ∆{3 1}

2 RΣ4:(Σ2×Σ2) = ∆{4} + ∆{3 1} + ∆{22}

1 RΣ4:(Σ3×Σ1) = ∆{4} + ∆{3 1}

1 RΣ4:(Σ2×Σ1×Σ1) = ∆{4} + 2∆{3 1} + ∆{22} + ∆{2 12}

0 RΣ4:Σ4 = ∆{4}

0 RΣ4:(Σ2×Σ1×Σ1) = ∆{4} + 2∆{3 1} + ∆{22} + ∆{2 12}

0 RΣ4:(Σ2×Σ2) = ∆{4} + ∆{3 1} + ∆{22}

-1 RΣ4:(Σ3×Σ1) = ∆{4} + ∆{3 1}

-1 RΣ4:(Σ2×Σ1×Σ1) = ∆{4} + 2∆{3 1} + ∆{22} + ∆{2 12}

-2 RΣ4:(Σ3×Σ1) = ∆{4} + ∆{3 1}

-2 RΣ4:(Σ2×Σ2) = ∆{4} + ∆{3 1} + ∆{22}

-3 RΣ4:(Σ3×Σ1) = ∆{4} + ∆{3 1}

-4 RΣ4:Σ4 = ∆{4}

Table 2 The decomposition of the transitive representations ofΣ4 on the irreducible representations∆{λ} in case
with n=3.

The porpose of this work was also to give a transparent presentation of KKR bijection, which constitutes
the essential point in searching for magnetic interpretation of that bijection. Such interpretation will allow
us to predict, purely on the combinatorics level, not only the character of the Bethe vectors but the complete
set of quantum numbers attributed to that state, as well.
Table 3 shows that we can use paths, created from standard Young tableaux, to obtain the total number of
the Bethe vectors. That fact implies that we can search for more information about rigged configurations
contained in paths. In particular, the shape of a path derived from a standard Young tableau encodes
information on the string configuration and the distribution of quasimomentum over strings.
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Magnetic The Young tableau The path String
configuration f y obtained from f obtained configuration

via RSK algorithm from y obtained
from y

via KKR
procedure

– – + + + +

1 2 5 6

3 4

0 2

– + – + + +

1 3 5 6

2 4

0
2

0

– + + – + +

1 3 4 6

2 5

0
2

1

+ – + – + +

1 2 4 6

3 5

1
2

1

– + + + – +

1 3 4 5

2 6

0
2

2

+ – – + + +

1 2 3 6

4 5

1 2

+ + – + – +

1 2 3 5

4 6

2
2

2

+ + – – + +

1 2 3 4

5 6

2 2

+ – + + – +

1 2 4 5

3 6

1
2

2

Table 3 Magnetic configurations, standard Young tableaux, paths and rigged configurations.
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