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A combinatoric description of Bethe Ansatz solutions for
nanoscopic systems

T. Lulek ∗

Departament of Physics, Rzeszów Technical University, W. Pola 2, 35-059, Rzeszów, Poland.

Bethe Ansatz provides an exact classification of eigenstates of the Heisenberg Hamiltonian for a finite mag-
netic ring, consisting of N nodes, each with the spins = 1/2 (with some extensions to an arbitrary spin s)
in terms of rigged string configurations. The latter are some combinatorial objects which serve as classifi-
cation labels for solutions of Bethe equations. An astonishing feature is existence of Robinson-Schensted
(RS) and Kerov-Kirillov-Reshetikhin (KKR) bijections between sets of (i) all magnetic configurations, (ii)
all pairs of standard Young and Weyl tableaux ofN boxes andn = 2s + 1 rows, (iii) all rigged string
configurations, for givenn ands. These bijections allow to point out an exact correspondence between
physically admissible solutions of highly nonlinear Bethe Ansatz equations and the initial basis of quantum
calculations - magnetic configurations which are just possible distributions of spins over the nodes.
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1 Introduction

Exactly soluble models [1-2] play an important role in understanding of physical processes in various
complex systems, since they provide, via Bethe Ansatz (BA) [2-4], exact solutions of appropriate equations
of motion for systems involving two-body interactions within N elementary objects. A leading example
is the linear Heisenberg ring of N spins s, coupled by exchange interactions between nearest neighbours.
For, say,2 < N . 104, such chains are typical models for nanoscopic systems which supply solutions
under full qualitative and quantitative control. Here we aim to point out a somehow surprising role of a
relatively simple combinatorics which is able to predict and to classify all solutions of highly non-linear
Bethe equations merely on the basis of some combinatorial sorting procedures.
It is well known that the spaceH of all quantum states of the linear Heisenberg ring of N spins s is spanned
on the set of all magnetic configurations, that is, the set

ñÑ = {f : Ñ −→ ñ} (1)

of all mappingsf : Ñ −→ ñ from the set

Ñ = {j = 1, 2, ..., N} (2)

of all magnetic nodes of the ring, to the set

ñ = {i = 1, 2, ..., n}, n = 2s + 1, (3)

labeling all possible z-projections of the single-node spin s such that the single-node state|i >, i ∈ ñ, cor-
responds to the z-projectionmi = s− i + 1 ∈ {s, s− 1, s− 2, ...,−s}. Just these two sets,̃N andñ, give
rise to an important combinatorics referred sometimes to as ”combinatorial BA” [5-8], which is capable to
classify the eigenstates of the Heisenberg Hamiltonian for the ringÑ , as solutions of appropriate Bethe
equations. These two sets constitute also the basis for the famous duality of Weyl [9] between the actions
of the symmetric groupΣN and the unitary group U(n), both acting in the spaceH of all quantum states
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of the Heisenberg magnet. We refer in the sequel to the setsÑ andñ as to the alphabet of nodes and spins,
respectively.
Here we aim to describe in some detail three sets of combinatorial objects, each of which yields an or-
thonormal basis in the spaceH: (i) the setñÑ of all magnetic configurations, (ii) the set of appropriate
pairs (t,y) of semistandard Young tableaux, t and y being a tableau in the alphabetñ of spins andÑ of
nodes, respectively; this set provides an irreducible basis for the duality of Weyl, (iii) the set of the so
called rigged string configurations, which classify eigenstates of the Heisenberg Hamiltonian for the mag-
netic ring along the Bethe hypothesis of strings; we describe the latter set for s=1/2 only, for reason of
conciseness.
Clearly, the most important physical information is enclosed in matrices of linear unitary transformations
between these three bases. Problem of explicit determination of these matrices is computationally equiv-
alent to that of solving the eigenproblem of the Heisenberg Hamiltonian, or solving a complete set of
appropriate Bethe equations, and thus is clearly outside our actual task. We have to point out, however,
that there exist in the literature two remarkable combinatorial bijections between these sets which allow
us to classify complete collections of final solutions. The first is the Robinson-Schensted (RS) correspon-
dence [10-11] (cf. also [12-14]) between the first and the second basis inH, whereas the second bijection
introduced by Kerov, Kirillov and Reshetikhin (KKR)[5] (cf. also [6-8]), associates each standard Young
tableau with a rigged string configuration. Here we present a brief demonstration of these two bijections.

2 Three bases in the space of all quantum states of a finite Heisenberg
magnet

We proceed to describe in some detail three orthonormal bases in the spaceH, mentioned in the intro-
duction. The first is the set̃nÑ of all magnetic configurations. Each element of this set is a mapping
f : Ñ −→ ñ, which can be presented in the form

|f >= |i1i2..., iN >, ij ∈ ñ, j ∈ Ñ , (4)

or, equivalently, as aword of the length N in the alphabet of spins. The unitary structure of the spaceH is
imposed by

< f |f ′ >= δff ′ , f, f ′ ∈ ñ, j ∈ j̃. (5)

The set̃nÑ provides an initial basis for any quantum calculations.
H is a carrier space of representations of the symmetric groupΣN and the unitary group U(n),denoted

by A and B, respectively. Actions of these groups, defined by

A(σ) =
(

f

f ◦ σ−1

)
, f ∈ ñÑ , σ ∈ ΣN , (6)

and

B(a)|f >≡ B(a)|i1i2...iN >=
∑

i′1i′2...i′N

ai′1i1ai′2i2 ...ai′N iN
|f ′ > (7)

a ∈ U(n), f ∈ ñÑ , f ′ ≡ (i′1i
′
2...i

′
N ) ∈ ñÑ ,

give rise to the duality of Weyl. Namely, the commutativity of these two actions,

[A(σ), B(a)] = 0, σ ∈ ΣN , a ∈ U(n), (8)
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imposes that the irreducible basis of both actions,A : ΣN × H −→ H andB : U(n) × H −→ H,
yields a complete set of states in the spaceH of all quantum states of the magnet, and elements of this
set are uniquely classified by labels of irreducible representations and their standard bases. In short, both
irreducible representations,∆λ entering A andDλ entering B, can be ”measured simultaneously”, together
with their standard bases, in the meaning of the Heisenberg uncertainty principle.

In order to be more specific, we recall briefly some rudiments of the representation theory of symmetric
and unitary groups (cf. e.g.[9,13-14] for more detail). The labels

λ = (λ1, λ2, . . . , λr), λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0, λi ∈ Z, (9)

are combinatoric objects calledpartitions, and satisfy the constraint
∑n

i=1 λi = N andr ≤ n for the
case of the symmetric groupΣN and unitary group U(n), respectively. The standard basis for the irrep∆λ

of ΣN is the set denoted usually as SYT(λ), consisting of all standard Young tableauxy ∈ SY T (λ) of
the shapeλ in the alphabetÑ of nodes. A standard Young tableauy ∈ SY T (λ) consists thus of boxes
yαβ ∈ Ñ , α = 1, 2, ..., r, andβ = 1, 2, ..., λα, such that entries of a Young tableau strictly increase along
each row and along each column, that is

yαβ < yαβ′ for β < β′, each row α, (10)

yαβ < yα′β for α < α′, each columnβ. (11)

Eqs. (10,11) define the standardness condition for Young tableaux. Dually, the standard basis for the irrep
Dλ of U(n), is the setWT (λ, ñ) of all semistandard Young tableaux t of the shapeλ in the alphabet̃n of
spins, referred hereafter to as Weyl tableaux. Semistandardness of a Weyl tableaut ∈ WT (λ, ñ) reads as

tαβ ≤ tαβ′ for β < β′, each row α, (12)

tαβ < tα′β for α < α′, each columnβ, (13)

that is, entries of a Weyl tableau weakly increase along each rowα, and strictly along each columnβ of λ.
Thus the second set, that is, the irreducible basis of the Weyl duality for the Heisenberg magnet charac-

terised by the pair (N,n), has the form

bW
irr = {|λty > | λ ` N, |λ| ≤ n, t ∈ WT (λ, ñ), y ∈ SY T (λ)} =⋃

λ`N,|λ|≤n WT (λ, ñ)× SY T (λ),
(14)

whereλ ` N denotes a partition of the integer N, and|λ| = r is the number of non-zero partsλi of λ. By
the definition, we have

A(σ)|λ t y 〉 =
∑

y′∈SY T (λ)

∆λ
y′y(σ) |λ t y′ 〉, (15)

B(a)|λ t y 〉 =
∑

t′∈WT (λ,ñ)

Dλ
t′t(a) |λ t′ y 〉, (16)

where∆λ
y′y(σ) andDλ

t′t(u) are elements of standard Wigner matrices for irreps∆λ for σ ∈ ΣN andDλ

for a ∈ U(n), respectively. In this way, the duality of Weyl yields a decomposition of the spaceH into
mutually orthogonal sectorsHλ, so that

A |Hλ= (dim Dλ) ∆λ, (17)

B |Hλ= (dim ∆λ) Dλ, (18)
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where dim denotes the dimension of an appropriate irrep. In other words, each sectorHλ is the carrier
space of(dim Dλ) copies of irrep∆λ, and, at the same time, of(dim ∆λ) copies ofDλ. More specificly,
the dual setsSY T (λ) andWT (λ, ñ) of standard Young and Weyl tableaux of the shapeλ, respectively,
serve as appropriate basis and/or repetition labels for the dual irreps.

We proceed to describe the setRC(λ), λ ` N , |N | ≤ n, of rigged string configurations, the building
blok for a complete labeling of eigenstates of the Heisenberg Hamiltonian. It can be introduced for an
arbitrary single-node spin s (and thus an arbitrary n), but we restrict ourselves in the sequel to the case
s = 1/2, so thatn = 2, and thusλ = (λ1, λ2) ≡ (N − r, r), with r ≤ N/2 having the interpretation
of the number of spin deviations from the ferromagnetic saturation state| + +...+ > (in all states of the
highest weight, that is for the total spinS = N/2 − r equal to its z-projectionM =

∑
j∈Ñ f(j)). One

can also interpret the integer r labeling the partitionλ as the number of Bethe pseudoparticles which are
hard-core indistinguishable particles, allowed to move on the finite crystalÑ [15]. A string configuration
is introduced in this case as a partitionν ` r of the integer r. Each part of this partition, or, equivalently,
each row of the Young diagram ofν, is referred to as astring of the lengthl equal to the number of boxes
in this row. A string configurationν ` r satisfies thus the sum rule∑

l

lml = r, (19)

with ml denoting the number of strings of the lengthl in a given eigenstate.
A complete characterization of an eigenstate with the string configurationν is given byrigging which

is realized by the set

L = {Lj
α|l = 1, 2, ..., α = 1, 2, ...,ml}, (20)

whereLj
α are nonnegative integers, one integer prescribed to each string(l, α) of ν, according to some

quantization rules, which determine the range of rigging. These rules can be expressed in terms ofpyramids
andholes[5-8]. A string of the lengthl can be presented as a pyramid, that is isosceles triangle with the
base 2l and the height l, with vertices on a square lattice with axes(j, 2S). Such a pyramid can be looked
at as the sequence of2l consecutive nodesj of the crystalÑ , first l of them occupied by the statei = 1, or
the spin ”+”, and the lastl - by i = 2, or by Bethe pseudoparticles. Various pyramids can move with the
discrete step1 on the crystalÑ and/or on the slopes of larger pyramids, with some constraints resulting
from the hard-core and undistinguishability of Bethe pseudoparticles. Essentially, a smaller pyramid can
move on each of the two slopes of a higher one until their heights coincide [7]. Simple combinatoric
considerations yield that the rangeP l for the strings of the lengthl in the string configurationν is given by

P l = N − 2Ql, (21)

whereQl is the number of boxes in the firstl columnsof the Young diagram of the string configurationν.
Quantum numbers of riggings have the range determined by

0 ≤ Ll
α ≤ P l, Ll

α ≤ Ll
α′ for α < α′, (22)

and thus the total number of admissible riggings of the string configurationν is

|z(ν)| =
∏

l

(
P l + ml

ml

)
(23)

P l is interpreted as the number ofholesof the lengthl and the riggingLβ
α as the number of admissible

moves of the string(l, α) to its leftmost position in the crystal̃N .
The third basis mentioned in the introduction is

beigen=
⋃

λ`N |λ|≤2

WT (λ, 2̃)×RC(λ), (24)
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where

RC(λ) ≡ RC(N − r, r) =
⋃
ν`r

z(ν), (25)

andz(ν) is the set of all riggings of the string configurationν.

3 Bijections of Robinson-Schensted and of Kerov-Kirillow-Reshetikhin.

We have presented three different bases in the spaceH of all quantum states of the Heisenberg magnet:
the setñÑ of magnetic configurations f, the setbW

irr of all pairs (t,y) of Weyl and Young tableaux of
the duality of Weyl, and the setbeigen of elements(t, νL) involving rigged string configurations which
classify exact solutions of Bethe. Elements of all these states are some combinatorial objects buildt from
the two alphabets, the nodes̃N and the spins̃n, according to certain combinatoric rules which reflect
transformational properties of the spaceH under the actions of the symmetric groupΣN and the unitary
group U(n). Here we make some short remarks on two important bijections which arrange these sets into
the chain

ñÑ RS−→ bW
irr

KKR−→ beigen, (26)

or

f 7−→ (t, y) 7−→ (t, νL) (27)

(cf. Fig. 1 for an example).

f =
j = 1 2 3 4 5 6

• • • • • •
i = − − + − + +

RS−→


P (f) = + + +

− − − = t

Q(f) = 1 2 4
3 5 6

= y

 KKR−→
(

0
1

0
2

)
= νL

a) b) c)

Fig. 1. An Example of combinatorial objects and mappings forN = 6 nodes andr = 3 spin deviations:
a) a magnetic configurationf ∈ 2̃6̃, b) the corresponding pair(P (f), Q(f)) of Weyl and Young tableaux
under the RS bijection, c) the corresponding rigged string configurationνL under the KKR bijection; the
latter consists of two strings, of the length 2 and 1, the range of rigging 0 and 2, and the actual rigging 0
and 1, respectively.

HereRS : ñÑ −→ bW
irr is the famous Robinson-Schensted algorithm [10-14], andKKR : bW

irr −→
beigen is a bijection introduced by Kerov, Kirillov and Reshetikhin [5-8]. We do not aim to describe them
here (in fact, both bijections are usually presented in a larger and more general context of a monoid on the
alphabet̃n, exceeding thus the framework of the Heisenberg magnet), but only point out for two features
which might be important in magnetism and nanoscopic physics. Firstly, we stress that these bijections are
purely combinatoric, which means that they do not involve any features outside the initial and target sets.
In particular, both bijections explore the natural linear order of the alphabetñ of spins (the linear order
of the alphabetÑ of nodes is already explored in the construction of the setñÑ ). Thus tiny solutions of
tremendously nonlinear Bethe equations are completely classified by mere combinatoric sorting procedures
on finite sets. Secondly both bijections are complete on orbits

Oµ = {f ◦ σ−1|σ ∈ ΣN} (28)
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of the symmetric groupΣN on the set̃nÑ , with the orbit labelµ = (µ1, µ2, ..., µn) being the weight of the
configurationf ∈ ñÑ (that is,µi is the number of nodes occupied by the spini ∈ ñ in configuration f), as
well as on the sectorsHλ of the quantum spaceH, In particular, we have the sum rule

dim∆λ =
∑

ν

|z(ν)|. (29)

which is a precise tool for predicting and checking the number of various string configurations, that is,
various types of bound states of the exact BA solutions. For example, in the case ofN = 8, n = 2, one
readily checks that among

(
8
4

)
= 70 states with zero total magnetization there are dim∆{42} = 14 highest

weight eigenstates, with possible string configurationsν = {4}, {3 1}, {22}, {2 12} and{14}, containing
1,5,1,6, and 1 rigged eigenstates, respectively. In other words, among various five configurations of strings
of coupled magnons, three occur only once (a four-string, two two-strings, and four single magnons), the
composite three-string and a single magnon - five times, and the composite two-string with two single
magnons - six times. Such calculations are quite far from a combinatorial explosion for many nanoscopic
sizes.

4 Conclusions

We have pointed out that exact solutions of BA for nanoscopic systems can be classified within a rela-
tively simple combinatorial scheme which involves three sets: magnetic configurations, pairs of Weyl and
Young tableaux, and rigged string configurations. Bijections of Robinson-Schensted and Kerov-Kirillov-
Reshetikhin between these sets allow us to perform this classification just by combinatorial sorting proce-
dures involving comparisons of letters of two alphabets, nodes and spins, which enter explicit solution of
highly nonlinear Bethe equations for nanoscopic rings.
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